
Measuring discrepancies in 
Airbnb guest acceptance 
rates using anonymized 
demographic data

The Airbnb anti-discrimination team



We would like to thank the following reviewers for their 
feedback: Dr. Latanya Sweeney and Jinyan Zang (Data 
Privacy Lab at Harvard); Dr. Cathy O’Neil and Jacob Appel 
(O'Neil Risk Consulting & Algorithmic Auditing); Antony 
Haynes, J.D. (Director of Cybersecurity and Privacy Law 
at Albany Law School); Gennie Gebhart, Kurt Opsahl, 
and Bennett Cyphers (Electronic Frontier Foundation); 
Harlan Yu, Aaron Rieke, and Natasha Duarte (Upturn); 
Mallory Knodel (Center for Democracy & Technology); 
and Dr. Conrad Miller (Assistant Professor of Economics 
at Berkeley Haas School of Business). 

Any mistakes in this paper are the sole responsibility of 
Airbnb. In the interest of encouraging others to adopt 
this methodology, Airbnb and the authors formally 
disavow any intent to enforce their copyright in the 
content of this technical paper. Airbnb will not be liable 
for any indemnification of claims of intellectual property 
infringement made against users by third parties.

The Airbnb anti-discrimination team is: Sid 
Basu*, Ruthie Berman, Adam Bloomston*, John 
Campbell, Anne Diaz*, Nanako Era, Benjamin 
Evans, Sukhada Palkar, and Skyler Wharton. 

The symbol * denotes corresponding authors—they may  
be reached at antidiscrimination-papers@airbnb.com.

mailto:antidiscrimination-papers%40airbnb.com?subject=Measuring%20discrepancies%20in%20Airbnb%20guest%20acceptance%20rates%20using%20anonymized%20demographic%20data


     3

We take this mission to heart, so we were deeply troubled by 
stories of travelers who were turned away by Airbnb hosts 
during the booking process because of the color of their skin. 
#AirbnbWhileBlack became a trending hashtag, and we heard 
from many hosts and guests who shared painful stories of 
being discriminated against. 

No online platform or marketplace is immune to the problems 
of racism and discrimination, including Airbnb. To help create 
a world where anyone can belong anywhere, we knew we had 
to do more to fight discrimination and bias.

We responded by making a series of commitments to combat 
discrimination [Murphy 2016]. In addition to an overhaul of our 
non-discrimination policy and improved responses to reports 
of discrimination, one of our more substantial commitments 
was to form a permanent anti-discrimination product team 
dedicated to fighting discrimination on Airbnb and ensuring 
that everyone has equal access to the trips they want to take. 
Over the past few years, the team has focused specifically 
on discrepancies in the product experience that may be 
attributable to race, and has introduced a number of product 
improvements intended to address the features of the online 
Airbnb experience that were adversely affecting some racial 
groups more than others. These discrepancies can be the 
result of explicit or implicit discrimination on an individual 
level (e.g., between hosts and guests), as well as the result of 
broader, systemic inequities [Edelman 2014, Edelman 2017]. 
Our most notable product change to date has been  
to time the display of the guest profile photos with a 
confirmed booking, in order to reduce bias in the  
booking request process.

In order to understand the true impact of such interventions, 
we must be able to measure how guests and hosts from 
different demographic groups experience Airbnb. Specifically, 
our team would like to measure experience gaps on Airbnb 
that are attributable to perceived race. We say that an 
experience gap occurs when one group of people is adversely 
impacted by a part of our product experience more than 
another group. This concept is best understood through a 
concrete example. Airbnb's homes booking process connects 
hosts, who list spaces where one can stay, to guests, who are 
searching for lodging. We can define a metric, the acceptance 
rate, as the rate at which hosts accept guests’ reservation 
requests. We can then compute this metric for different 
groups of guests in our study. The gap between acceptance 
rates for guests in two different groups is an experience gap 
which, in this case, we call an acceptance rate gap (ARG).

Since discrimination is generally a result of one person's 
perception of another, we've chosen to concentrate on 
measuring inequities with respect to these perceptions, which 
we’re calling perceived race [Smedley 2005]. There are many 
nuances in how these perceptions are made and influence 
human behavior that warrant further exploration. To narrow 
the focus of this initial paper, we concentrate on how to 
measure the acceptance rate gap between guests who are 
perceived to be white and guests who are perceived to be 
black within the United States. 

Airbnb wants to create a world where  
anyone can belong anywhere. 

Introduction
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It is important that we strive to provide the highest degree of 
privacy protection we can for Airbnb hosts and guests while 
we conduct this measurement. The problem of balancing 
data utility and privacy is a complex one, with no clear cut 
solution. Nevertheless, we believe that it is critically important 
to protect the privacy of our community. The risk of misuse 
of perceived race data is serious, whether from internal or 
external threats. 

We have developed our system with the help, guidance, and 
insight of several civil rights partners, privacy groups, and 
academic advisors. The system is designed to minimize the 
risk that individuals’ perceived race can be retrieved from the 
data that are used to make measurements. We achieve this 
by enforcing the privacy model of p-sensitive k-anonymity in 
order to prevent certain attribute disclosure; we also utilize 
asymmetric encryption across trust boundaries to ensure that 
data flows are one-way. Because anonymization can adversely 
affect data utility, we have developed a simulation-based 
methodology to understand the effect of data anonymization 
on statistical power. Our analysis shows that, even with 
anonymized1 data, we can still achieve an adequate degree of 
statistical power to measure the efficacy of interventions to 
reduce the acceptance rate gap.

1 We define anonymized, anonymity, and anonymization as used throughout this technical paper in the section Technical overview: Disclosure threat 
categories.

The impact that technology companies have on our daily 
lives cannot be overstated, and with that impact comes a 
tremendous responsibility to treat the people who rely on 
our products with integrity and respect. Our hope is that this 
technical paper can serve as a blueprint for other companies. 
We also hope it can be a starting point for further innovations 
that not only rigorously measure discrepancies present on 
online platforms, attributable to perceived demographics, but 
also uphold user privacy.
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Technical overview

Perceived race data is needed to measure the acceptance 
rate gap. However, the data we use need not be identifiable, 
or attributable to an individual user. Safeguarding our hosts’ 
and guests’ data and protecting their privacy is critical to 
the success of our work. Therefore, we want to only collect 
and store data at a minimum level of identifiability required 
to accurately measure discrimination so that, in the event 
of internal misuse or external leakage of data, users cannot 
be targeted at scale based upon their perceived race. At 
this point, we also note that our process of measurement is 
constrained to only our US communities—the system we’ve 
developed to ensure we restrict analysis to only our US 
communities is outside the scope of this paper.

External leakage of data and abuses of confidential data are 
well-catalogued phenomena [Shabtai 2012, Sweeney 1997]. 
Were we merely dealing with confidential demographic data, 
this alone would warrant heightened rigor and scrutiny. In our 
context, the bar is raised even higher because:

• We’re dealing with particularly sensitive demographic 
data, race, in a country with a history of racial 
discrimination and profiling [Rothstein 2017].

• These data are being handled by a large technology 
company (Airbnb), and the technology industry as a  
whole deserves increased scrutiny regarding the use  
(and potential mis-use) of personal data [Hern 2018].

This bar is not meant for all companies nor all contexts—we 
believe it is most appropriate for companies whose scale of 
impact merits it and whose resources allow for meeting such a 
high bar. Our goal in this paper is to empower such companies 
with the knowledge and tools they need to measure and 
mitigate experience gaps without having to engage in 
privacy-by-design from scratch.

The tension between respecting/preserving the privacy 
of our users and leveraging the benefit of granular data is 
ever-present in privacy-conscious data analysis and research 
[AEPD 2019, Sweeney 2000, Mendes 2017]. In the following 
two subsections, we provide more details on both sides of 
this tradeoff. We start by discussing more technical details 
about the privacy threats our system is designed to mitigate, 
before defining the privacy objective of our system. We then 
discuss how we measure the usefulness of anonymized data in 
measuring the acceptance rate gap.

The goal of this paper is to present a system 
that analyzes the acceptance rate gap 
using anonymized perceived race data. In 
this section, we provide more details about 
the technical objectives of this system, 
discussing both privacy and data utility. 
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Disclosure threat 
categories

For the purposes of this 1 paper, an unauthorized disclosure 
occurs when an attacker (also referred to as misactor) gains 
unauthorized access to sensitive data [Lambert 1993]. In this 
subsection, we categorize the different disclosure threats 
described in the privacy literature. We then conclude this 
subsection with a precise definition of what we mean when  
we say the perceived race data in our system is anonymized.

We discuss three types of disclosure threats, in order of 
increasing specificity:

1. Membership disclosure occurs when an attacker gains 
knowledge about whether or not a person’s record exists 
in a dataset [Gkoulalas-Divanis 2014]. Other terms for this 
include: table linkage [Fung 2010].

2. Attribute disclosure occurs when an attacker gains 
knowledge about a sensitive value or values associated 
with a person.

3. Identity disclosure occurs when an attacker gains 
knowledge about which row or rows in a dataset may 
correspond to a person [Gkoulalas-Divanis 2014]. Other 
terms for this include: singling-out [Article 29 DPWP 
2014], re-identification [Lambert 1993], and unique re-
identification [Sweeney 2018].

See figures 1-3 on the right for examples of each type  
of disclosure.
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Disclosure can vary from probabilistic to certain: probabilistic 
disclosure occurs when an attacker has increased their 
knowledge through an attack, but not to the point of being 
certain2—this occurs when they are able to revise their 
posterior beliefs to be largely different from their prior beliefs 
[Fung 2010, Machanavajjhala 2006]. Additional terms used 
for various probabilistic disclosures are inferential disclosure 
[HealthStats NSW 2015], inference [Article 29 DPWP 2014], 
skewness attack [Domingo-Ferrer 2008, Li 2006], group re-
identification [Sweeney 2018], and background knowledge 
attack [Machanavajjhala 2006]. See Figure 4 below for  
an example.

2 Our threat categorization differs from [Fung 2010] in considering certainty a dimension among the three types of threats (in [Fung 2010] termed table, 
attribute, and record linkage) rather than a fourth type disclosure (in [Fung 2010] termed probabilistic attack).

A disclosure may provide an attacker knowledge that may be 
correct or incorrect. A disclosure may still cause harm even 
if incorrect [Article 29 DPWP 2014, Sweeney 2018, Lambert 
1993]. In considering disclosure in our system, we do not 
distinguish between disclosure that is actually correct or 
incorrect—we aim to mitigate the risk that these data can be 
used to target individual users based upon perceived race at 
scale, regardless of correctness.

For our purposes, identifying a user in a dataset (a breach of 
anonymity) is only relevant if doing so leads to knowledge 
of the user’s perceived race (a breach of anonymity with 
respect to an attribute [Sowmyarani 2013]). In other words, 
we’re primarily concerned with attribute disclosure where the 
sensitive attribute is perceived race. Membership disclosure 
isn’t relevant in our context because it won’t lead to certain 
knowledge of perceived race (this is tied to the p-sensitivity 
of the dataset, discussed in later sections). Identity disclosure 
is only relevant insofar as the row or rows contain perceived 
race, in which case attribute disclosure has also occurred. 
Our primary focus is thus on preventing certain attribute 

disclosure—because of this focus (sensitive attribute in  
lieu of membership, certain in lieu of probabilistic), 
ε-differential privacy is not an appropriate base privacy 
model on which to build our system. However, in future 
work non-interactive forms of differential privacy may be 
overlaid to mitigate probabilistic disclosure—see the section 
Future work: Limiting probabilistic disclosure [Fung 2010, 
Mohammed 2011].

The scale of potential disclosure is also relevant. Our 
paper discusses disclosure with respect to an individual for 
convenience of language, but our goal is really to mitigate 
the risk of disclosure at scale so that a significant number of 
users cannot be targeted based upon their perceived race. 
After all, if a misactor is looking to target a relatively small 
number of users based upon their perceived race, rather than 
attempting a complicated privacy/security attack, the easiest 
way to do so would be to manually perceive the race of those 
users themselves by using available data. In other words, we 
want to ensure that unauthorized access to the perceived 
race data doesn’t help a misactor to target individuals based 
upon their race much more than access to the identifiable 
data (profile photo and first name) alone.

In summary, we consider data to be anonymized in this 
initiative if the risk of certain sensitive attribute disclosure 
at scale (where the sensitive attribute is perceived race) 
is sufficiently mitigated. In the section System design, we 
describe how we enforce the privacy model of p-sensitive 
k-anonymity in order to prevent certain sensitive attribute 
disclosure; in a later section, Disclosure risk analysis, we 
analyze how the system mitigates the disclosure  
risks discussed.
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Data utility 

While identifiable data is not necessarily required to measure 
the acceptance rate gap, the anonymization process could 
still make accurate measurement difficult or impossible. The 
literature has shown that anonymization can harm data utility, 
the usefulness of data for analysis [Wu 2013, Daries 2014, 
Angiuli 2015]. Given the importance of our team's ability to 
measure progress, we have decided to engage in an in-depth 
study of how the anonymization process affects data utility. 
We focus on task-specific data utility, where the task we 
study is measuring the impact of features intended to reduce 
the acceptance rate gap. We are interested in the effect of 
anonymization on statistical power—the probability that we 
detect a change if a true change occurred. We develop a 
simulation-based framework to analyze this relationship. We 
find that, while enforcing anonymity reduces statistical power 
through a 0-20% relative increase in minimum detectable 
effects, we can offset this impact through running studies 
with larger sample sizes. More details can be found in the 
section Simulation construction and results. The framework 
we present was designed to be adaptable to other contexts, 
acting as a supplement to more general measures of data 
utility that are task-independent.

The anonymized perceived race data described in this paper 
may help us measure, and consequently work to mitigate, 
experience gaps beyond the acceptance rate gap. There’s no 
blueprint for combating discrimination on online platforms, so 
we have to develop an understanding of the 

3 Instant Book in its current form is not an effective blanket solution for the acceptance rate gap. Additional internal research has shown that, given 
concerns about discrimination, Instant Book is not always an attractive or perceived-as-viable method of booking for Black guests.

problem as it pertains to Airbnb from the ground up. We 
might use these data, for example, to study patterns in Instant 
Book usage. Instant Book allows guests who meet a host’s 
requirements book a place to stay immediately without 
needing the host’s individual approval. Since Instant Book 
leads to a 100 percent initial acceptance rate3, making it easier 
for people to use Instant Book can lead to a reduction in the 
acceptance rate gap. Task-independent measures of data 
utility, such as those discussed in [Gkoulalas-Divanis 2014], 
are valuable in ensuring that the anonymized data is useful for 
such applications. 

The rest of the paper is outlined as follows. The next section 
provides an in depth overview of the System design, 
introducing the privacy model of p-sensitive k-anonymity 
and the mechanism we use to enforce it. Simulation 
construction and results then discusses the data utility 
of the anonymized data. The next section, Disclosure risk 
analysis, enumerates the certain sensitive attribute disclosure 
threats present in the system. We conclude by discussing 
potential improvements to our system in Future work, before 
summarizing key takeaways in the Conclusion. 
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System design

The main processes in our system are:

Guest Booking + Select Guest Data: the process by which 
US guests book on Airbnb and we collect the relevant data 
for computing acceptance rates (e.g., whether a reservation 
request was accepted or rejected). 

K-Anonymize: this process has two main components:

1. Using a combination of generalization and suppression 
to achieve k-anonymity for the data used to compute 
acceptance rates.

2. Preparing data for a research partner to perceive race. 
The research partner is an external affiliate who is under 
a confidentiality agreement with Airbnb and has their 
systems reviewed by Airbnb security. We use asymmetric 
encryption to ensure that the internally identifiable data 
prepared exclusively for and sent to the research partner 
cannot subsequently be retrieved by Airbnb and re-linked 
to the k-anonymized data.

Perceive Race: our research partner assigns perceived race to 
pairs of photos and first names. The existence of this separate 
organization (and associated trust boundaries) allows for the 
data flow to be one-way to mitigate the risk that it be re-
linked to the k-anonymized data by Airbnb.

P-Sensitize: we perturb the results of the previous process in 
order to achieve p-sensitivity prior to storing it.

Measure ARG: we use the k-anonymized p-sensitive data to 
measure the acceptance rate gap (ARG).

In this section, we walk through a simplified 
data flow diagram of a system that allows 
our team to, in the final step, measure the 
acceptance rate gap using anonymized 
perceived race data. As we walk through 
each process and its associated datastores, 
we introduce the relevant privacy models 
k-anonymity and p-sensitive k-anonymity and 
associated anonymization methods.
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Figure 5 below maps out how these processes relate to each 
other in a Data Flow Diagram (DFD). There are four types of 
entities in the DFD:

1. Data stores, e.g., User Data, are databases or files.

2. Processes, e.g., Select Guest Data, transform input data 
into output data flows.

3. Data flows, e.g., the arrow from User Data to Select User 
Data, show how data is moved across the system, either 
between processes or to/from data stores.

4. Trust boundaries, e.g., Airbnb anti-discrimination Team 
Trust Boundary, represent boundaries where the level of 
trust changes so that, for an actor to have access to data 
in datastories and access to run processes within a trust 
boundary, they would need to be authorized appropriately. 
A misactor may gain unauthorized access to entities within 
a trust boundary, as discussed further in the more detailed 
analysis in Appendix 2: LINDDUN privacy analysis.

We now examine each process in detail.
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blocks [Machanavajjhala 2006], and pseudo-identifiers [Aggarwal 2005].

The Airbnb anti-discrimination team's data scientist prepares 
an aggregation of US guests’ booking acceptances and 
rejections to measure the acceptance rate gap. Table 1 on the 
left provides an example output for Select Guest Data that is 
used in the remainder of this paper. Safeguards and processes 
to ensure only US guest data are analyzed are outside the 
scope of this paper.

Membership and identity disclosure threats are inherent 
in this dataset due to the identifying attribute user_id. 
Furthermore, given knowledge of membership, an attacker 
may be able to achieve identity disclosure through the 
other attributes in the dataset. Quasi-identifiers4 are 
those attributes that may be used to determine the guest 
associated with a data row through linking to other data 
[Dalenius 1986]. In the dataset above, n_accept and n_
reject are quasi-identifiers; for instance, if an attacker knew 
there was only one user (user_id = 2) whose aggregation of 
contacts by Select Guest Data would produce n_accept = 
1, n_reject = 2, then the attacker could uniquely identify 
that user’s row in the dataset, even if the identifying attribute 
user_id were not present.

Recognition of which attributes are quasi-identifiers and, 
more importantly, recognition of which attributes are 
not quasi-identifiers, cannot be done perfectly due to (1) 
incomplete knowledge of the data recipients knowledge 
[Sweeney 1997] and (2) increasing availability of data and 
capabilities for linkage attacks over time [Cavoukian 2012]. (1) 
covers to some degree the notion of an internal attacker with 
access to analytics data on our users [Domingo-Ferrer 2008], 
as well as an external attacker gaining unauthorized access 
to our systems via hacking or unauthorized scraping (as 
considered, e.g., in [Daries 2014]). Additionally, the empirical 
risks of re-identification may be higher than the standard 
worst-case scenario considered in k-anonymity, defined in the 
next section, (1/k) due to additional attributes not considered 
as quasi-identifiers [Basu 2015].

Guest Booking

Guest Booking is the process by which a guest interacts with 
the Airbnb platform in order to book a stay. This process 
has been described in the section Technical Overview. The 
resulting data from this process is stored in User Data and is 
available to Airbnb data scientists to conduct analyses. Some 
examples of the data collected include: which listing a guest 
tried to book, whether they were accepted, and whether or 
not they used Instant Book. Details of this process are outside 
the scope of this paper.

Select Guest Data

This has led to experts' recommendation that all non-sensitive 
attributes be considered at least quasi-identifiers unless 
explicitly argued otherwise [Sweeney 2018]. Thus, we consider 
all attributes, besides perceived race, to be quasi-identifiers 
because an attacker may seek to link back to any dataset, 
most prominently User Data.
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The K-Anonymize process transforms the dataset from Select 
Guest Data to achieve k-anonymity and prepares data for 
subsequent processes. In this subsection, we give an overview 
of k-anonymity5, walk-through two methods together used 
to achieve k-anonymity (generalization and suppression), and 
provide a detailed description of the K-Anonymize process.

A group of data rows whose quasi-identifiers have identical 
values is termed an equivalence class6 [Li 2006]. In Table 2 on 
the previous page, we group user_ids by equivalence class 
so that there are four equivalence classes, or unique values of 
the tuple n_reject, n_accept.

For a dataset to be k-anonymous, besides expunging 
identifiers (in the example dataset, user_id), all equivalence 
classes must include at least k data rows [Sweeney 2002]. 
The above dataset, for instance, is k-anonymous with k = 
1 because there exist three equivalence classes with 1 row 
(user_id) and one equivalence class with 2 rows. k-anonymity 
is often achieved through a combination of generalization 
and suppression [Samarati 1998]. We walk through these two 
methods in sequence below.

5 See Technical overview: Disclosure threat categories for a discussion of our choice of k-anonymity, rather than ε-differential privacy, as our base 
privacy model.

6 Other terms for equivalence class include P-set [Narayanan 2008] and QI-group [He 2016].

K-Anonymize

Suppression means suppressing, or removing, rows or 
attribute values from a dataset; it can be helpful when 
considering outlier values that, if generalized with other 
values, would lead to a significant reduction in data utility 
[Samarati 1998]. For the example dataset, if we suppress 
the row associated with user_id = 5 (whose n_accept 
value of 11 is an outlier), we will achieve k-anonymity on the 
dataset for k = 2, as shown in Table 4 below.

In order to measure the acceptance rate, we will need to 
transform the quasi-identifier intervals into numbers. In order 
to maximize data utility, we microaggregate the values of 
certain quasi-identifiers in each equivalence class by taking 
the arithmetic mean [Domingo-Ferrer 2002]. We discuss 
potential improvements to better leverage microaggregation 
in Future work: Measuring additional experience gaps. 
Replacing intervals with arithmetic means yields the 
2-anonymous microaggregated dataset shown in  
Table 5 below.

Equipped with an understanding of k-anonymity, we can now 
walk through the K-Anonymize process. First, K-Anonymize 
transforms the dataset to achieve k-anonymity as described 
above. Before discarding the Airbnb internal identifier user_
id, it generates a random row identifier that will be used for 
subsequent processes; we call this new identifier a nid. The 
mapping between user_id and nid is no longer available 
after K-Anonymize completes.

Generalization means replacing attribute values with less 
precise values. In the example dataset, if we examine the 
values for n_accept and n_reject for the equivalence 
classes for user_id = 1 and user_id = 2 in Table 1 on 
the previous page we see that n_accept is already identical; 
if we replace n_reject values of 1 and 2 for these two 
rows with the closed interval [1, 2] then we will have 
merged the two equivalence classes into one, as shown in 
Table 3 below.
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The Research Partner is given pairs of first names and photos 
of Airbnb hosts or guests. First name is provided because 
studies have shown that first names are a strong signal for 
perception of race in the United States [Bertrand 2004]. 
Appendix 3 Research Partner requirements outlines a 
comprehensive list of requirements a research partner must 
satisfy, including regular security review and confidentiality.

They then assign a perceived race to each pair of first names 
and photos. In our system design, we require the Research 
Partner to engage in the human perception of race, i.e. to 
not utilize algorithms for computer perception of race. We’ve 
imposed this requirement for two reasons:

1. The use of and improvement of algorithms that use facial 
images for perception of race warrants additional scrutiny 
and input from, among others, our outside civil rights and 
privacy partners [Fu 2014].

2. Preliminary internal research has shown that pre-existing 
algorithms that don’t use facial images, such as Bayesian 
Improved Surname Geocoding (BISG), are not sufficiently 
accurate to allow for measuring the acceptance rate gap 
with precision [CFPB 2014].

A later section Future work: De-identifying user profile 
photos mentions a general method currently being internally 
developed of measuring the impact changes to the inputs for 
Perceive Race, so that we can later more robustly assess the 
accuracy of pre-existing algorithms such as BISG while still 
using this overall system and the privacy protections  
it provides.

Data Store 1 is stored securely and data is automatically 
deleted 30 days after persisting. Access to Data Store 1 
is restricted to authorized members of the Airbnb anti-
discrimination team.

At this point, the data scientist may inspect Data Store 1 
before the remaining processes are followed. This allows 
for additional out-of-band checks on expected data utility 
prior to initiating the expensive manual process of collecting 
perceived race data (Perceive Race, discussed below).

K-Anonymize also creates File 1 (using user_id and User 
Data) for use by the Research Partner. File 1 contains the data 
required for Perceive Race: a identifier for each user row, the 
user’s first name (seen by the host when they accept/reject a 
guest), and the profile photo for the user.An example dataset 
(following the example from above) is shown in Table 7 below.

Using a public key provided by Research Partner, File 1 is 
asymmetrically encrypted prior to persisting so that, because 
only Research Partner has the private key, Airbnb can no 
longer decrypt File 1 (which is why it lies within the Research 
Partner Trust Boundary) and thus loses the linking from nid 
to photo_url. The linkage between nid to user_id is 
not persisted so that, because File 1 cannot be decrypted 
by Airbnb, it is lost when K-Anonymize completes. If Airbnb 
had access to the data in File 1, they could re-link to user_id 
through nid → photo_url → user_id. This is discussed in 
further detail in a later section, Disclosure risk analysis.

Perceive RaceK-Anonymize persists the k-anonymous dataset with nid 
to Data Store 1—an example dataset (following the example 
from above) is shown in Table 6 below. Note that Data Store 
1 does not yet contain perceived race data—that data is 
introduced in subsequent processes below.
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While this example dataset achieves k-anonymity for k = 2, 
sensitive attribute disclosure may still occur in the following 
scenario (known as a homogeneity attack [Basu 2015, 
Machanavajjhala 2006]):

1. Suppose an attacker knows that user_id = 1 is in the 
dataset (membership disclosure, though knowledge of 
Select Guest Data).

2. Through knowledge of the generalization strategy 
(knowledge of the business logic in K-Anonymize) the 
attacker knows that the user’s quasi-identifiers have been 
generalized into the equivalence class with n_accept = 
1, n_reject = 1.5.

3. Because all rows in that equivalence class have the same 
value for the sensitive attribute perceived_race (a 
homogeneous equivalence class), the attacker can infer 
that the perceived_race associated with the user_id 
= 1 is white.

p-sensitive k-anonymity7 means that each equivalence class 
(of cardinality >= k) in a dataset has at least p distinct values 
for a sensitive attribute [Truta 2006]. In this example, the 
dataset is 1-sensitive 2-anonymous because the equivalence 
class n_accept = 1, n_reject = 1.5 has only 1 distinct 
value for perceived_race: white. If we would like it to 
be 2-sensitive 2-anonymous, we can perturb (or randomly 
change) values for perceived_race where needed to 
achieve p = 2, which may result in the following modified 
dataset in Table 10 on the left.

P-Sensitize

P-Sensitize joins File 2 and Data Store 1, perturbs 
perceived_race as needed to achieve p-sensitivity (defined 
below), and persists the dataset (without nid) to Data Store 
2. File 1 and File 2 are deleted upon successful persistence to 
Data Store 2. If we join the examples for File 2 and Data Store 
1 from Table 8 and Table 6, we have the dataset in Table 9 on 
the left.

The data defining who to perceive is provided in File 1, for 
which only the Research Partner has the private key to 
decrypt, so that Airbnb doesn’t have access to the data in File 
1. The Research Partner creates File 2 with the results—an 
example dataset (following the example from above) is shown 
in Table 8 below.

File 2 is also asymetrically encrypted, this time with a public 
key provided to the Research Partner by Airbnb; only 
authorized members of the Airbnb anti-discrimination team 
have the private key (which is why it lies within the Airbnb 
anti-discrimination Team Trust Boundary).
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One criticism of p-sensitivity is that it may entail substantially 
reduced data utility due to the sparsity of distinct values for 
a sensitive attribute in the original dataset [Domingo-Ferrer 
2008]. Another criticism is that, if an attacker understands 
the generalization strategies used to achieve p-sensitive 
k-anonymity (in this system, knowledge of the business 
logic in K-Anonymize and P-Sensitize) and has background 
knowledge of the quasi-identifiers (in this system, knowledge 
of User Data and Select Guest Data), they may be able to 
achieve sensitive attribute disclosure for some users through 
a minimality attack8 [Wong 2007]. 

P-Sensitize, because it utilizes perturbation rather than 
generalization, circumvents both of these issues: the data 
utility reduction is limited by the rows perturbed; a minimality 
attack requires generalization in order to infer homogenous 
equivalence classes that required further generalization. 

8 Special thanks to Dr. Cathy O’Neil and Jacob Appel of O'Neil Risk Consulting & Algorithmic Auditing for constructing a scenario demonstrating a 
minimality attack.

The final step in the system is for the team’s data scientist 
to measure the acceptance rate gap, the experience gap 
for which we’re focusing in this paper, using the p-sensitive 
k-anonymous aggregate contact data that includes perceived 
race data in Data Store 2. Further details around how we 
measure the acceptance rate gap and changes in it are 
provided in the next section, Simulation construction  
and results.

Measure Acceptance  
Rate Gap

Once P-Sensitize perturbs the data to achieve p-sensitivity 
(k-anonymity had already been satisfied by K-Anonymize), it 
strips the nid and persists the output to Data Store 2—an 
example dataset (following the example from above) is shown 
in Table 11 below.

Data Store 2, as with Data Store 1, is stored securely, data  
is automatically deleted 30 days after persisting, and  
access is restricted to authorized members of the Airbnb  
anti-discrimination team. P-Sensitize finally deletes File 1 and 
File 2.
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The literature has shown that anonymization can adversely 
affect data utility [Wu 2013, Daries 2014, Angiuli 2015, Karr 
2006, Drechsler 2011, Gkoulalas-Divanis 2014]. Therefore, 
we have dedicated a substantial amount of time to estimate 
the consequences of enforcing anonymity on data utility. 
Our primary uses of anonymized data are calculating 
the acceptance rate gap and measuring changes in the 
acceptance rate gap following product launches and other 
interventions. Airbnb, like most other technology companies, 
tries to understand the effect of interventions by running 
A/B tests (where users are randomly assigned to either the 
A or B group), which are designed to measure changes in 
outcomes between control and treatment groups [Moss 2014, 
Overgoor 2014, Parks 2017]. This leads us to study the effect of 
anonymizing data on task-dependent data utility, where the 
task we consider is measuring the impact of A/B tests on the 
acceptance rate gap. 

More specifically, we analyze how data anonymization affects 
the statistical power of these tests, as well as the distribution 
of the estimates that they yield. We develop a simulation-
based framework for this: we vary parameters such as the 
value of k we use in k-anonymization, how long we run A/B 
tests for, and the effectiveness of our interventions. We 
then study the relationship between these factors and our 
measures of data utility. Simulation-based approaches have 
previously been used to measure data utility in the statistical 
disclosure limitation (SDL) literature [Karr 2006, Drechsler 
2011]. Our work is novel in applying a simulation-based 
methodology to understanding the impact of anonymization 
on the efficacy of A/B tests. Our framework is designed to 
be easily adapted to suit many contexts where A/B testing 
is used, such as other large technology platforms where 
experience gaps may exist undetected.

Simulation construction 
and results

In this section, we lay out the methodology 
we use to understand how anonymizing data 
affects our ability to measure the acceptance 
rate gap. 
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We begin by providing an overview of the simulation we 
run to measure data utility. Several steps in this process 
should appear familiar to the reader, as they correspond to 
steps described earlier in our System Design. To make this 
connection clear, we add the name of the relevant System 
Design section in parentheses next to each step of the 
simulation. Nevertheless, there are important distinctions 
between the overall system and the simulation. Firstly, we run 
the entire data flow many times, varying parameters such 
as k, in order to study their impact on data utility. Secondly, 
the simulation has no step to perceive race (Perceive Race). 
Instead, we randomly assign users into groups; the group one 
is in then affects their probability of acceptance. Finally, we 
randomly perturb some acceptances and rejections during 
our analysis in order to mimic the impact of a feature launch 
that impacted the acceptance rate gap. A more detailed 
walkthrough of the simulation is below.

Step 1 (Guest Booking): 
We start by simulating data to mimic an experiment on our 
platform that has had an impact on the acceptance rate 
gap. We focus on a host-side experiment, which means that 
each host will be assigned to either the treatment or control 
group.9 The data consist of one row per contact sent from 
guest to host. The dataset will have N (to be determined later) 
rows and has the following schema:

• Guest identifier: a guest can send multiple contacts, so 
this allows us to discern who sent which contact. This 
corresponds to user_id in the prior section System 
design. As the following process flow shows, it is not 
necessary for computing an experiment's impact on the 
acceptance rate gap.

• Guest group: we use a pseudo-random number generator 
to assign guests to group A, B, or C. This corresponds to 
perceived race in the rest of the paper. This is necessary 
for computing an experiment's impact on the acceptance 
rate gap. The following analysis focuses specifically on 
the acceptance rate gap between guests in group A and 
guests in group B.

• Host experiment group: whether the host was in the 
control or treatment group of the experiment. We use 
a pseudo-random number generator to determine 
this, with half of hosts being in control and the other 
half in treatment. This is necessary for computing an 
experiment's impact on the acceptance rate gap.

9 This is distinct from a guest-side experiment, where randomization occurs at the guest level and each guest is assigned to either the treatment or 
control group.

• Accepted: indicates whether a contact was accepted 
or not. We use a pseudo-random number generator 
to determine this. This is necessary for computing an 
experiment's impact on the acceptance rate gap. There 
are two factors that affect one's acceptance probability:

 – The guest's group: we model guests in group A to have 
the highest probability of acceptance, followed by 
guests in group B and C. 

 – The host's treatment: if a host is in treatment, their 
acceptance rate of guests in group A does not change. 
However, their acceptance rates of guests in groups 
B and C increase by an effect size that we control as 
an input to the simulation. Guests in group B see their 
acceptance probabilities increase by the effect size we 
see in the following analyses, while guests in group C 
see an increase that’s half the magnitude of effect size.

Step 2 (Select Guest Data): 
Once we have generated the contact-level (one row per 
contact) dataframe, we collapse it into a guest-level (one 
row per guest) dataframe that’s ready for our anonymization 
processes (Step 3 and Step 4 below). This dataframe has  
the schema:

• Guest identifier

• Guest group

• n_accepted_contacts_treatment: the number of contacts 
sent to hosts in the treatment arm of the experiment that 
were accepted

• n_rejected_contacts_treatment: the total number 
of contacts sent to hosts in the treatment arm of the 
experiment that were rejected

• n_accepted_contacts_control: the number of contacts 
sent to hosts in the control arm of the experiment that 
were accepted

• n_rejected_contacts_control: the total number of contacts 
sent to hosts in the control arm of the experiment that 
were rejected

Simulation construction
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Step 3 (K-Anonymize): 
We then use ARX API, an open source tool for anonymizing 
datasets [Prasser 2014], to k-anonymize the dataframe. 
Optimal (achieving the best data utility) k-anonymity is NP-
hard [Meyerson 2004]; ARX utilizes a heuristic algorithm to 
achieve k-anonymity through a combination of generalization 
and suppression.

Step 4 (P-Sensitize): 
We then p-sensitize the dataframe: for each equivalence class 
that violates p-sensitivity with p = 2, we randomly select a row 
and perturb the guest group. Prior to perturbing the data to 
achieve p-sensitivity, we record the percentage of rows that 
are part of a homogeneous equivalence class. This is used to 
assess the potential impact of homogeneity attacks in the 
Disclosure risk analysis section below.

Step 5 (Measure acceptance rate gap—
generate contact data): 
We then expand the p-sensitive k-anonymous dataset to 
be a contact-level dataset. We do this by adding a row for 
each contact in the p-sensitive k-anonymous dataset, which 
contains the host's experiment group, the guest's group, 
and whether the contact was accepted or rejected. For 
contact counts that are non-integral we use the non-integral 
component as a pseudo-random weighted coin toss for 
whether to include an additional contact accept or reject.

Step 6 (Measure acceptance rate gap—
compute experiment result): 
We estimate the impact of the experiment by running a 
regression of the form:

accepted ~ a * experiment_group + b * guest_
group + c * guest_group * experiment_group

Here is a detailed breakdown of the variables shown above:

• accepted is 1 if a contact is accepted and 0 otherwise

• experiment_group is either control or treatment, 
depending on which arm of the experiment a host was in

• guest_group refers to the demographic group a guest 
was in. We limit our analyses to guests in groups A and B.

10 This occurs when the c, coefficient on experiment_group * guest_color, is different from zero in a statistically significant way.

We record c, the coefficient on guest_group * 
experiment_group, and whether it’s statistically significant 
or not. In the remainder of this paper, we refer to c as the 
experiment impact on the acceptance rate gap.

In this step we also measure privacy metrics used in  
sections below.

Run Simulation: 
We repeat Steps 1-6 1,000 times for each combination of the 
following experiment setups:

• k = 1, 5, 10, 50, 100 

• Number of contacts in analysis, N = 150,000, 200,000, 
250,000, 300,000, 350,000, 400,000, 450,000, 500,000, 
550,000, 600,000

• The expected experiment impact on the acceptance rate 
gap, effect size = 1.00, 1.25 1.50, 1.75, 2.00, 2.25 percentage 
points

For each experiment setup, we can then compute the fraction 
of the 1,000 simulation results where the null hypothesis 
of no experiment impact on the acceptance rate gap was 
rejected.10 The fraction of the tests that reject the null 
hypothesis is the power of the test. We also compute the 
smallest effect size for which we have a power of 80 percent 
as the minimum detectable effect of the test. 

This framework also allows us to study the impact of k and 
N on statistical power and the distribution of effects we 
observe. The results of this analysis are in the next section.
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As expected, statistical power increases with sample size. We 
also see that power decreases as k increases. This decrease 
is on the order of magnitude of 1-2 percent when k = 5, but 
increases to 5-10 percent when k = 100.

Once we have the results from the simulation, the first thing 
we want to do is analyze the impact of changing k and N on 
statistical power. Statistical power is our primary measure 
of data utility, as it measures how effective we can be at 
detecting the impact of feature launches on the acceptance 
rate gap. We plot the relationship between effect size and 
statistical power for various values of N in Figure 6 below.

Overall simulation results
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The main takeaway is that anonymizing data increases 
an experiment's minimum detectable effect by 0-20% 
(depending on the value of k) in our context. This implies that 
we can detect the impact of experiments on the acceptance 
rate gap with anonymized demographic data. However, there 

is clearly some degree of reduced data utility, or information 
loss, that occurs in the process of enforcing anonymity. Our 
simulations demonstrate that we can mitigate this loss' effect 
on statistical power by obtaining a larger sample size (number 
of contacts). Practically, this means that we can mitigate the 
effects of data anonymization by running experiments  
for longer. 

There could be other consequences of this information loss 
on measurement. To dig further into this subject, we analyze 
the impact of our simulation parameters on the distribution of 
observed effect sizes.

Figure 7 below gives an aggregate view of the above analysis 
by plotting the minimum detectable effect (smallest effect 
size with at least 80% power) by N and k. For example, setting 
k to be 5 or 10 leads to a 0.00 to 0.25 percentage point 
increase (0-20% relative increase) in minimum detectable 
effect. Setting k to 100 leads to a 0.25 to 0.50 percentage 
point increase in minimum detectable effect.
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In this section, we study the relationship between k and the 
distribution of observed effect sizes, or the magnitude of the 
change in the acceptance rate gap we observe in a simulation 
run. This is equal to the coefficient c, on guest_group * 
experiment_group in the regression we run in step 6 of the 
simulation construction, described above. This is distinct from 
the expected impact on the acceptance rate gap, which we 
control as an input to the simulation.

We can gain a more detailed view of how k affects 
measurement by fixing an experiment size (N) and expected 
effect size, while also looking at the distribution of observed 
effect sizes for various values of k. Figure 8 below shows such 
a distribution for our simulation runs with 400,000 contacts 
and an expected reduction in the acceptance rate gap of 1 
percentage point. 

If we did not enforce anonymity, we would expect the 
distribution of observed effect sizes (c) to be normally 
distributed with a mean of the expected effect size. This is 
what we see when k = 1 in Figure 8. When we increase k, the 
data still appear to be normally distributed. A QQ plot of 
these distributions (Figure 9 on next page) does not show 
much evidence for non-normality. However, the distributions 
appear to be shifted rightwards (i.e. have downward bias) and 
have higher variance for larger values of k. This implies that 
our estimates of experiment impact on the acceptance rate 
gap become less precise as we increase k. The combination 
of downward bias and higher variance appear to be the 
principal drivers of reduced statistical power when k is large. 
We explore this further in the next subsection. Table 12 
below provides summary statistics of the simulation runs we 
conducted that provide more concrete evidence supporting 
these observations.

Initial analysis of the distribution 
of observed effect sizes



     22

We also run a Kolmogorov-Smirnov test of the observed 
distribution versus a normal distribution with mean and 
standard deviation equal to those seen in the simulation runs. 
The columns ks_stat and ks_pvalue in Table 12 record the 
test statistic and p-value respectively. We do not see much 
evidence that would lead us to reject the null hypothesis  
of normality.

Table 13 below shows the same summary statistics as Table 12, 
for N = 400,000 and an expected effect size of 2 percentage 
points. The trends we see are similar, with the difference that 
the magnitude of downward bias is slightly smaller.

The columns mean_b, sd_b, and skew_b in Table 12 record 
the mean, standard deviation, and skewness of the observed 
effect sizes. As suggested by the plots in Figure 8, the mean of 
the observed effect sizes is smaller than the actual effect size 
we simulated. This leads to an attenuation bias that ranges 
from 3.4 percent (k = 5) to 11.3 percent (k = 100). The standard 
deviation of observed effect sizes also increases from 0.49 (k 
= 1) to 0.64 (k = 100). The distribution of observed estimates is 
relatively symmetric and does not show much skew.
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Further analysis of the bias and 
variance of our simulation results

We can use the breadth of the simulations we ran in order 
to improve our understanding of the drivers of statistical 
bias and variance of our simulation results. We ran over 
1,000 simulations for each possible combination of k, N, and 
expected effect size. This allows us to take a given k and use 
the results for various N's and expected effect sizes in order 
to obtain a distribution for statistical bias for that k. Repeating 
this exercise for various k's allows us to gain a heuristic for the 
relationship between k and bias.

The first panel of Figure 10 below shows how bias clearly 
increases as k increases. We can repeat the same exercise for 
the number of contacts in an experiment and the expected 
reduction in the acceptance rate gap (second panel of Figure 
10). We do not see a large correlation between N and bias, 

Based on this analysis, we believe we can use p-sensitive 
k-anonymous perceived race data, for p = 2 and k = 5, to 
measure the impact of different Airbnb features on the 
acceptance rate gap. We provide additional context and 
guidelines for selecting k in Appendix 1: survey of values of k.

but we do see that bias seems to decrease slightly for larger 
effect sizes (third panel of Figure 10).

Figure 11 below replicates this analysis for the empirical 
variance of estimated effect sizes. We see that dispersion 
increases as k increases and decreases as N increases.  
Neither of these observations should be particularly 
surprising. We do not see a major correlation between 
dispersion and effect size.
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Summary of findings 
from simulations

The major findings from our simulations are summarized 
below. Firstly, when we enforce k-anonymity with k = 5, we 
see a 0-20 percent increase in the minimum detectable 
effect of an A/B test's impact on the acceptance rate gap. 
We can mitigate this reduction in statistical power by running 
A/B tests for longer in order to obtain larger sample sizes. 
After analyzing the distribution of observed effect sizes, we 
see that this increase in minimum detectable effects is driven 
by a downward bias and increased variance in our estimates 
of A/B test impact for higher values of k. We expect that 
further enhancements to the parameters and algorithms 
used in the anonymization processes (K-Anonymize in 
particular) will reduce the impact of anonymization on our 
ability to measure the acceptance rate gap. This may allow 
us to use higher values of k as well as potentially use this 
system to measure other potential experience gaps where 
anonymization may have a larger impact on data utility. We 
discuss some of these potential enhancements later in the 
Future work section below.
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Disclosure risk analysis

In this section, we enumerate the certain attribute 
disclosure threats in the system by examining data linkages. 
We then, for each threat, provide a risk assessment to 
establish that we believe we have sufficiently mitigated the 
risk of certain attribute disclosure so that we may consider 
the perceived race data as anonymized.
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In the data-linkage diagram in Figure 12 below, a block 
represents a datastore11 from the system design: the title 
of the datastore is in bold, followed by the relevant data 
attributes in the datastore. There is an additional block 

11 In this section vs. Appendix 2, we do not distinguish between a datastore and its input/output dataflow—for simplicity all are represented datastores.

12 The following blocks are colored yellow: User Data, Public Data.

13 The following blocks are colored red: Data Store 2, File 2.

labeled Public Data, which represents potentially extant data 
about users outside the system. Datastores that contain 
externally identifiable user data are colored yellow12 (e.g., 
User Data on its own contains sufficient data about most 
users to uniquely identify them); those that contain perceived 
race, the relevant sensitive attribute for disclosure analysis, 
are colored red13 (e.g., File 2 contains perceived race). The 
diamonds describe data linkages (e.g., Data Store 1 may be 
related, or linked to, File 2 via the NID). Solid lines represent 
data or data linkages that are certain to exist. Dashed lines 
represent linkages where data may exist (e.g., not all users 
may have photos available in Public Data) or linkages that 
are probabilistic (e.g., k-anonymous so that the probability of 
linkage is at-most 1/k, rather than 1.0). 

Appendix 2 provides a formal privacy analysis using the 
LINDDUN privacy threat modeling methodology [Deng 2011]. 
Though the LINDDUN methodology is helpful in providing a 
high-level framework for threat modelling, it does not provide 
tools to help ensure all concrete threats to linkability of data 
(one of the many categories of threats the methodology 
attempts to capture) have been explicitly reviewed. In this 
section, we create and analyze a data-linkage diagram, a 
variation on an entity-relationship diagram, to enumerate all 
such threats.
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Each data linkage is described below:

• User Data ~ Data Store 1, Data Store 2: given knowledge 
of the Select Guest Data process, aggregate contact data 
in User Data may be matched to that in either Data Store 
1 or Data Store 2. However, because aggregate contact 
data attributes are quasi-identifiers and both data stores 
are k-anonymous, a user’s aggregate contact data in User 
Data may be mapped to no less than k rows in either Data 
Store 1 or Data Store 2; the probability of each row being 
matched correctly (certain attribute disclosure) is 1/k.

• User Data ~ File 1: a user’s profile photo URL in User Data 
is unique, so that data in File 1 may be linked to User Data 
using that URL.

• Data Store 1, File 1 ~ File 2: the unique row identifier NID 
(generated by K-Anonymize) may be used to link rows 
between Data Store 1, File 1, and File 2.

• Public Data ~ File 1: facial recognition/photo matching may 
be used to link the user’s publicly available photos and the 
user’s profile photo. Unless the exact same photo exists in 
both Public Data and File 1, the matching will be uncertain, 
i.e. probabilistic. First Name from File 1 may be used to 
increase certainty through either (1) its direct existence  
in Public Data, or (2) linkage between other quasi-
identifiers in Public Data, e.g., location data, with publicly 
available name distributions such as those in public  
voter registrations.

Linkages from Public Data to User Data aren’t considered 
because, were an attacker to achieve linkage between  
User Data and a datastore containing perceived race data, 
linkage to Public Data would be unnecessary to achieve the 
objective of attribute disclosure. It may, however, improve 
posterior beliefs, i.e. increase the risk of probabilistic  
attribute disclosure.

14 Appendix 2 reviews both probabilistic and certain attribute disclosure threats, though doesn’t exhaustively examine malicious modification of 
processes (which this section does examine in some detail). This section only covers certain attribute disclosure. As before, we do not distinguish 
between a datastore and its input/output dataflow—for simplicity all are represented as a datastore.

Equipped with this data-linkage diagram and an 
understanding of each linkage, we then enumerate all paths 
from externally identifiable user data (yellow blocks) to 
perceived race data (red blocks). Each such path represents 
a linkability threat in our privacy analysis in Appendix 2. In 
this section, we review each threat that may lead to certain 
attribute disclosure14. The scenarios are ordered by our 
subjective prioritization of their risks—the likelihood of the 
attack scenario and its impact [Deng 2011]. This prioritization 
will help guide future improvements to system design such as 
those discussed in the later section, Future work.
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In this scenario, represented in Figure 13 below, an attacker 
effectively circumvents P-Sensitize to engage in a 
homogeneity attack [Basu 2015, Machanavajjhala 2006]; the 
attacker achieves certain attribute disclosure for those users 
who are members of homogenous equivalence classes. Once 
the attacker joins File 2 and Data Store 1 (using NID as a key), 
they examine all equivalence classes and, for those that have 
only a single distinct perceived race value, have achieved 
certain attribute disclosure.

We believe the likelihood of this threat is low as it requires the 
misactor be a malicious authorized member of the Airbnb 

anti-discrimination Team or to circumvent access controls to 
gain access to the datastores. Future work: Modifying trust 
boundaries to further protect anonymity describes potential 
improvements to further reduce the likelihood of this threat. 
We believe the impact of this threat is medium—reflecting 
the small percentage of users we expect, based on our 
simulations, to be in homogenous equivalence classes  
(less than 1% for k >= 5 across most simulations)—see 
Figure 14 below.

Homogeneity attack
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In this scenario, represented in Figure 15 below, an attacker 
achieves the mapping from NID to User ID using one of three 
methods (in decreasing order of likelihood):

1. An internal attacker (most likely a malicious authorized 
member of the Airbnb anti-discrimination team) modifies 
K-Anonymize to capture the NID ~ User ID mapping.

2. An internal attacker circumvents access controls to 
Research Partner to obtain the decryption key for File 1, 
and then joins User Data and File 1 (using the profile photo 
URL unique to each user) to achieve NID ~ User ID mapping. 

3. An external attacker (most likely a malicious authorized 
Research Partner employee) achieves unauthorized access 
to User Data (breaching Airbnb Trust Boundary) and 
knowledge of Select Guest Data.

The attacker would then join the resulting User ~ NID data to 
File 2 (using NID) to achieve certain attribute disclosure for all 
users in the dataset.

We believe the likelihood of this threat is low as it requires 
either a malicious authorized member of the Airbnb anti-
discrimination team and/or circumventing access controls 
across one or more trust boundaries. Future work: Modify 
trust boundaries to further protect anonymity describes 
potential improvements to further reduce the likelihood of 
this threat. We believe the impact of this threat is high as it 
leads to certain attribute disclosure for all users in the dataset.

NID ~ User ID mapping 
attacks

Photo matching 
attack

In this scenario, represented in Figure 16 below, an attacker, 
likely a malicious authorized Research Partner employee, joins 
File 1 to File 2 (using NID) to achieve attribute disclosure for 
each user whose profile photo from File 1 exists in Public Data.

We believe the likelihood of this threat is high—while we 
assume the likelihood of internal malicious attackers to be 
low, externally we assume high. Future work: De-identifying 
user profile photos describes improvements currently being 
developed to further reduce the likelihood of this threat. 
We believe the impact of this threat is medium as it leads to 
certain or probabilistic (depending upon the photo matching 
method) attribute disclosure for some users in the dataset 
[Acquisti 2014].

The Future work section below maps out areas of future 
research, some of which may help further mitigate the 
disclosure risks described above.
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Future work

In this section, we describe ways to improve and extend our 
system for measuring discrimination; following this section 
we conclude with an overview of our findings. These areas of 
work fit into three broad categories: improving measurement 
(through increased data utility), improving privacy (through 
further mitigating disclosure risks), and expanding scope 
(through measuring additional experience gaps).
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Modifying trust  
boundaries to further 
protect anonymity

One area of future work is to investigate modifying trust 
boundaries to further reduce the likelihood of threat scenarios 
related to Homogeneity attack and NID ~ User ID mapping 
attacks described in the prior section Disclosure risk analysis. 
Two potential modifications of trust boundaries (see prior 
section System design) warrant further analysis:

• Moving P-Sensitize to within Research Partner  
Trust Boundary.

• Splitting Airbnb anti-discrimination Team Trust Boundary 
into two separate trust boundaries (with associated 
organizational firewalls) to ensure that no individual is a 
member of a team with access to both K-Anonymize and 
P-Sensitize.

Each potential change will require careful cross-functional 
analysis to understand its impact on privacy, data utility, and 
organizational overhead.

15 Special thanks to Gennie Gebhart of the Electronic Frontier Foundation for pointing out the increased photo matching attack risk for users whose first 
name is unique—this led us to expand this research project to prepare for future increased mitigation of this risk for those users.

16 Special thanks to Dr. Cathy O’Neil and Jacob Appel of O'Neil Risk Consulting & Algorithmic Auditing for suggesting the introduction of noise to the 
first anonymization process (K-Anonymize).

De-identifying user  
profile photos

Modifying guests’ profile photos to remove identifying 
(mostly facial) features for use by the Research Partner may 
reduce the likelihood of threat scenarios related to photo 
matching attacks described in the disclosure risk analysis.

There is a growing body of research on de-identifying face 
images [Alexander 2003, Newton 2005, Gross 2006(a), Gross 
2006(b), Muraki 2013]. We will, however, need to measure the 
impact of various de-identification algorithms on our ability 
to measure experience gaps because they will impact the 
accuracy of perception of race by individuals (the Research 
Partner) [Li 2017, Gross 2006(a)].

Because of our risk assessment (see Disclosure risk analysis: 
Photo matching attack), we have begun this research 
internally and, besides pursuing de-identification of images, 
are also developing a general method of measuring the 
impact changes to the inputs for, or to the process of, 
Perceive Race (e.g., de-identification of face images, removal 
of first name15, and multiple perceivers) have on accuracy of 
perception, all while still using p-sensitive k-anonymous data.

Limiting probabilistic 
disclosure

One potential area of future work is to enforce additional 
privacy models to limit probabilistic attribute disclosure. 
One way to quantify the risk of probabilistic disclosure is 
t-closeness, a metric that measures the amount of information 
an attacker can gain through knowledge of a user belonging 
to a particular equivalence class beyond the knowledge 
gained through overall membership disclosure alone [Li 
2006]. In the future, we may pursue enforcing t-closeness or 
its variants [Li 2006, Soria-Comas 2015, Sowmyarani 2013]; 
other more nuanced definitions of l-diversity beyond distinct 
l-diversity (a synonym for p-sensitivity) [Machanavajjhala 
2006]; other methods such as (α, k)-anonymity [Wong 2006]; 
and the introduction of uncertainty to the generalization 
procedure16, perhaps as part of non-interactive forms of 
differential privacy [Mohammed 2011].
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There are several approaches that we can consider to improve 
data utility in measuring experience gaps. Firstly, we can draw 
from the literature and pursue an alternative to generalization 
as a method to achieve k-anonymity. One such alternative 
is anatomization, where individual row quasi-identifiers 
are not generalized and are instead decoupled from 
sensitive attributes [Xiao 2006]. Another alternative is semi-
homogenous generalization, an extension of generalization 
whereby a data row may be a member of multiple equivalence 
classes [He 2016].

Rather than pursuing an alternative to generalization, we may 
also consider prioritizing the order in which quasi-identifiers 
are generalized to better maximize data utility. An example 
where this method could be helpful is to use pre-experiment 
data to reduce variance in our estimates of the acceptance 
rate gap. In our context, we can use features such as a 
host's overall acceptance rate prior to their assignment to 
the experiment we are analyzing. As [Deng 2013] shows, 
appropriately chosen features, or control variates, can 
increase our statistical precision. However, having additional 
quasi-identifiers would likely increase information loss during 
the anonymization procedure. Our current implementation 
of generalization does not prioritize among quasi-identifiers. 
Thus, information essential to computing the acceptance 
rate gap, such as the number of accepted contacts, is as likely 
to be generalized as a non-essential feature, the host's prior 
acceptance rate. This would likely lead to information loss that 
would render the implementation of control variates unviable. 
Being able to prioritize among quasi-identifiers would then 
allow us to implement advanced methodology that increases 
our statistical precision.

Having a deeper understanding of data utility in our 
context will help us implement any of the above-mentioned 
approaches. It would likely be beneficial to further explore 
what drives the downward bias in our estimates of the 
acceptance rate gap for higher values of k. Some avenues for 
exploration include analyzing which records get suppressed 
or generalized when we enforce k-anonymity. Users that are 
more active are more likely to have their records altered (as 
they are more likely to have unique values for features such as 
number of contacts). Therefore, we can potentially increase 
data utility by being more careful about how we generalize 
such records. It may also be valuable to conduct additional 
simulations to understand whether k-anonymization or 
p-sensitization has a larger effect on data utility. This could 
lead us to take a different approach to enforcing k-anonymity. 
Revising our method of measuring the acceptance rate gap to 
account for the anonymity of the data may also improve data 
utility [Inan 2009].

Improving data utility
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Ensuring anonymization 
across multiple datasets

We anticipate measuring the acceptance rate gap using this 
system on a regular but not continuous basis. This, in concert 
with our security precautions including automatic deletion 
of the data, has led us to work under the assumption that an 
attacker may gain access to one or many of the data stores/
files associated with a single instance of data analysis only 
(one flow through the system).

A future improvement on the system may be to relax this 
assumption and consider each anonymized demographic 
dataset (Data Store 2) as one of many sequential or 
independent releases, so that an attacker may utilize multiple 
such datasets to attempt to achieve disclosure [Xiao 2007, 
Ganta 2008].

Fully homomorphic 
encryption

A homomorphic encryption scheme is an extension of an 
asymmetric, or public-key, encryption scheme to allow 
computations on the encrypted data whose result, when 
decrypted, is equivalent to a result were the decrypted data 
computed upon directly. Fully homomorphic encryption (FHE) 
schemes allow for arbitrary computations on encrypted data, 
including statistical analysis on large datasets [Martins 2017, 
Aslett 2015, Wu 2012].

A promising area of future work is to investigate iterations on 
the system design using FHE to reduce risks and potentially 
entirely mitigate some vulnerabilities. There is also the 
potential to design a system whereby a separate organization 
provides services to allow for cryptographically secure 
analysis of experience gaps for technology companies such  
as Airbnb.

Measuring additional 
experience gaps

In our current setup, we can predict the impact of 
anonymization on our ability to accurately measure the 
acceptance rate gap, or the effect of an A/B test on the 
acceptance rate gap. It is important to note that the impact 
of anonymity on data utility is relatively small in this context. 
This is because we have many users in each study, and many 
hosts and guests send or receive a small number of contacts. 
Therefore, we have a relatively high number of users in each 
equivalence class. 

There are many other contexts, which are important to 
tackling discrimination, where there will be fewer users in 
each equivalence class. For example, if we were interested 
in examining geographical patterns of experience gaps in 
the United States, we would have to compute experience 
gaps in each geographic region, thus encountering smaller 
equivalence classes. There are also other experience gaps 
that we would like to measure. For example, we can study 
patterns in Instant Book cancellation rates for guests of 
different demographics. To ensure that the system  
presented in this paper can be used to measure and  
mitigate discrimination in such contexts, we will need to  
keep refining and extending it from both data utility and 
privacy perspectives. 

Additional types of data, multiple rows of data per user, 
and/or high-dimensional data may bring new challenges 
requiring new methods, such as those articulated in [Aggarwal 
2005, Fung 2010, Li 2012, Narayanan 2008, Nergiz 2008]. 
Condensation [Aggarwal 2004] is another alternative to 
generalization that may improve correlations across data 
fields for experience gap analysis. It may also require less 
investigation on the impact of anonymization on data utility. 
Related methods such as microaggregation [Domingo-
Ferrer 2002] as well as data partitioning and data clustering 
algorithms mentioned in [Gkoulalas-Divanis 2014] may also 
prove worthwhile.

As we work to improve our measurements, develop tools, 
and close further experience gaps, we are committed to 
protecting privacy and maintaining transparency with  
our community.
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Conclusion

We’ve shown in this paper how to build a novel system to 
measure the acceptance rate gap while minimizing the risk 
that an individual’s perceived race can be retrieved from 
the data; we achieve this by enforcing the privacy model of 
p-sensitive k-anonymity in order to prevent certain attribute 
disclosure and utilizing asymmetric encryption to ensure data 
flows across trust boundaries are one-way. 

Our analysis of the utility of these anonymized data on the 
task of measuring the efficacy of interventions to reduce 
the acceptance rate gap shows that we can still achieve an 
adequate degree of statistical power to measure  
platform-wide changes with anonymized data. 

As we have done for this initial system for measuring the 
acceptance rate gap, we will continue to consider the goal 
of privacy on equal footing to that of our ability to measure 
experience gaps so that we ensure privacy is properly 
baked into the systems we build and operate [Basu 2015, 
Cavoukian 2012]. We will continue to follow privacy research 
developments; as our system designs change, we will publish 
further papers for the benefit of other organizations doing 
similar work and to seek feedback to improve how we do our 
work [Sweeney 1997, Sweeney 2018].

We know that bias, discrimination,  
and systemic inequities are complex  
and longstanding problems. Addressing 
them requires continued attention, 
adaptation, and collaboration. We 
encourage our peers in the technology 
industry to join us in this fight, and to  
help push us all collectively towards  
a world where everyone can belong.
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Appendix 1: 

Survey of values of k
The choice of an appropriate k to mitigate the risk of attribute 
disclosure is domain-specific and somewhat subjective. We’re 
not aiming to thwart, for example, an individual manually 
reviewing data in an attempt to achieve attribute disclosure 
(e.g., in [Sweeney 1997] and [Sweeney 2000]). Instead, we’re 
choosing a k so as to reasonably prevent an attack from 
achieving en-masse certain attribute disclosure, allowing 
them to target a significant number of users based upon their 
race—see Technical overview: Disclosure threat categories 
for further discussion of our privacy goals.

To ground our selection of k, we reviewed the literature 
to understand values of k used by various institutions, 
summarized in Table 14 below. EU and US privacy legislation 
doesn’t provide explicit guidance around acceptable 
disclosure risks with respect to cell size (for the purposes of 
our analysis, k as described below): e.g., FERPA [Rooker 2004, 
Angiuli 2015], HIPAA [US DHHS 2012], EU legislation [Basu 
2015, Article 29 DPWP 2014]; instead there are a variety of 
guidelines provided.

The operative term in many of the references in Table 14 is 
the numerator or cell size—the number of persons/rows/
cases with a particular condition or value in a cell; minimum 

numerator before data suppression/modification is required 
is considered k. Some of the guidelines provide a rationale 
for suppression, beyond re-identification risk, based on the 
unreliability of statistics from small numerators, e.g., [Rhode 
Island DH 2016, HealthStats NSW 2015]. Many also provide 
additional guidelines around other aspects of the data, e.g., 
denominator—the population size, or number of persons/
rows/cases aggregated in some manner with respect to 
the cell; what exactly constitutes the denominator can be 
context-specific, however [California DHS 2016].

Based on this review, we believe the following requirements 
for k are appropriate for measuring the acceptance rate gap:

1. Use a k value greater than or equal to 5.

2. Following [Sweeney 2000], use the highest value of k  
that we believe will allow us to achieve the aim of a 
particular analysis.

3. We may, without violating the first requirement, provide 
some buffer in following the second requirement in 
order to ensure we do not need to repeat the operation 
(incurring additional costs) in the event of an overly 
conservative (high) k.
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Appendix 2: 

LINDDUN privacy analysis
In this section, we provide a formal privacy analysis using the 
LINDDUN privacy threat modelling methodology [Deng 2011]. 
Threats were identified using the documented LINDDUN 
threat trees [DistriNet 2019]. Threat nodes from threat trees 
are identified in parentheses, e.g., Unawareness (U) or Re-
identification possible (I_ds4).
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Misactor definitions

• 2.4 File 1 is within the 5.3 Research Partner Trust Boundary 
but not 5.1 Airbnb Trust Boundary to reflect that, while 
those within 5.2 Airbnb anti-discrimination Team Trust 
Boundary have access to 3.4 K-Anonymize (which writes to 
2.4 File 1), the content written is asymetrically encrypted, 
with the public key available to those within 5.2 Airbnb 
anti-discrimination Team Trust Boundary but the private 
key is generated and only available within 5.3 Research 
Partner Trust Boundary. A similar argument applies to 2.5 
File 2’s placement.

• Data in 2.3 Data Store 1, 2.4 File 1, 2.6 Data Store 2, and 2.5 
File 2 are automatically deleted 30 days after persistence. 
This ensures data is not stored longer than necessary 
(L_ds5).

• Data in 2.4 File 1 and 2.5 File 2 are deleted by 3.5 
P-Sensitize after it completes persisting data to 2.6 
Data Store 2. This ensures data is not stored longer than 
necessary (L_ds5).

• Data in 2.3 Data Store 1 and 2.6 Data Store 2 is 
k-anonymous and, in the case of 2.6 Data Store 2 also 
p-sensitive, i.e. only as much identifying information is 
stored as required (L_ds6, I_ds6).

• The unique row identifiers (NID) generated by 3.4 
K-Anonymize are guaranteed to be unique per run of 3.4 
K-Anonymize only and are pseudo-random. Furthermore, 
we assume that no misactor can reliably reproduce the 
(pseudo-randomly generated) User ID ~ NID mapping, 
ensuring identifiability via linkability to User ID (I_ds5) is 
not achievable using NID.

• Profile photo URL (from 2.1 User Data, 2.4 File 1) is pseudo-
randomly generated; we assume no misactor can reliably 
reproduce the User ID ~ Profile photo URL mapping 
without access to 2.1 User Data.

Data flow diagram

Additional details relevant to the privacy analysis (with 
reference to the DFD in Figure 17 on previous page):

Misactors are defined based upon which trust boundaries 
they reside within, i.e. where they already have authorized 
access—the relationships between misactors and authorized 
trust boundaries is given in Figure 18 below. There is no 
misactor who holds both a role at Airbnb (MA2, MA3) and 
the research partner (MA4) so that unauthorized access 
is required if a misactor were to breach both 5.3 Research 
Partner Trust Boundary and one of 5.1 Airbnb Trust Boundary, 
5.2 Airbnb anti-discrimination Team Trust Boundary.

MA1. The general public, i.e. outside 5.1 Airbnb Trust 
Boundary and 5.3 Research Partner Trust Boundary. 
They only have authorized access to 2.7 Public Data.

MA2. Subset of Airbnb employees within 5.1 Airbnb 
Trust Boundary but not within 5.2 Airbnb anti-
discrimination Team Trust Boundary.

MA3. Subset of the Airbnb anti-discrimination team within 
5.2 Airbnb anti-discrimination Team Trust Boundary.

MA4. Subset of the research partner employees within 5.3 
Research Partner Trust Boundary.
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Threat assumptions

Threat category exclusions
TA1. Linkability threats (L) are not considered in isolation; 

instead they are only considered insofar as they 
contribute to other threats such as Identifiability (I).

TA2. Non-repudiation threats (NR) are not considered 
because plausible deniability is not a relevant privacy 
requirement.

TA3. Detectability threats (D) are not considered in isolation 
because internal knowledge that a user (1.1 Users) has 
participated in an analysis (3.6 Measure acceptance 
rate gap) is not considered an issue, i.e. membership 
disclosure threats are not considered [Gkoulalas-
Divanis 2014].

TA4. Information Disclosure security threats (ID) are not 
considered in isolation; security analysis of Airbnb 
systems is beyond the scope of this analysis and is 
confidential. For the purposes of this analysis, assume 
that internal security best practices are followed 
within and across 5.1 Airbnb Trust Boundary and 5.2 
Airbnb anti-discrimination Team Trust Boundary. An 
implication of this assumption is that Identifiability 
threats for processes (I_p), because they only occur 
in the case of Information Disclosure threats for 
processes (ID_p), are not considered in isolation.

Component exclusions
TA5. Identifiability (I_e) of 1.1 Users is not considered a 

threat in isolation, but only insofar as it relates to 
Identifiability of context data (I_df).

TA6. Identifiability (I_e) and Unawareness (U_e) for 1.2 
Research Partner are not considered threats.

TA7. The following are not analyzed in isolation for threats: 
2.1 User Data, 3.1 Airbnb Application, Data flows 4.1 
- 4.4. Security/privacy analysis of these components 
(including e.g. authentication processes) is beyond the 
scope of this analysis and is confidential.

TA8. Only aspects of Non-Compliance (NC) pertinent to 
establishing the users for which analysis is permissible 
(3.2 Filter Users) are considered.

TA9. Knowledge that a user’s data may be applicable for 
analysis is not considered sensitive, so that 2.2 Filtered 
Users, Data flows 4.5 - 4.8 are not analyzed in isolation 
for threats.

TA10. Data flows 4.9 - 4.13 are not analyzed in isolation for 
threats; its assumed that, within 5.2 Airbnb anti-
discrimination Team Trust Boundary, Information 
Disclosure of a data flow (ID_df) requires the same or 
additional misactor sophistication than Information 
Disclosure of the relevant data store (ID_ds). 
Furthermore, security analysis of these components in 
Airbnb’s systems is confidential.

TA11. Asymmetric encryption for 2.4 File 1 and 2.5 File 2 
ensures that Data flows 4.14 - 4.17 are sufficiently 
protected from Identifiability threats (I_df4, I_df).

TA12. 2.7 Public Data is not analyzed in isolation for threats.

Other assumptions
TA13. The data flow diagram and privacy analysis doesn’t 

model storage or access to profile photos from the 
profile photo URL (2.1 User Data) by external entities 
(1.1 Users, 1.2 Research Partner). Security/privacy 
analysis of this aspect of Airbnb’s systems  
is confidential.

TA14. 2.4 File 1 and 2.5 File 2 are stored in an intermediate 
shared file service. The use of this service has been 
audited by the Airbnb security team and access is 
restricted to only the relevant subsets of the Airbnb 
anti-discrimination team and the research partner. We 
consider the intermediate shared file service outside 
the scope of this privacy analysis.
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Mapping to threats

An “X” in the Table 15 below represents a threat category 
(column) to analyze for the component (row); “X”s are grayed 
out if assumptions articulated above remove the necessity  
of analyzing the threat category for the component in the 
next section.

Threat scenarios

Threat scenarios are documented as a general description of 
the attack in which a misactor may engage. Each scenario also 
includes a subjective risk assessment of high, medium, or low 
and an argument for the risk assessment—the likelihood of 
the attack scenario and its impact [Deng 2011].

TS1: User unaware of their general 
participation
A user (1.1 Users) is unaware (U) of their general participation 
in analysis (U_1) to measure and mitigate discrimination by the 
Airbnb anti-discrimination team (MA3). This occurs because 
the notification to Airbnb community does not sufficiently 
raise awareness to users of their participation (U_3); in 
addition, they may not notice their option to opt out in their 
account’s privacy & sharing page (U_4). Insufficient awareness 
may also be considered non-compliance (NC, NC_4).

We believe the likelihood of this threat is low due to 
our extensive work to publicize this initiative, including 
notifications and providing an explicit option for opt-out for 
US users; we believe the impact of this threat is medium as it is 
important that our community be aware of their participation.

TS2: User unaware of their specific 
participation
A user (1.1 Users) is unaware (U) of the specific ways in which 
their participation in analysis by the Airbnb anti-discrimination 
team (MA3) occurs; this unawareness is due to one of:

• The general use or the timing of the use (U_2)—the Airbnb 
anti-discrimination team does not communicate each time 
analysis (3.6 Measure acceptance rate gap) occurs.

• The specific perceived race associated with their 
aggregate contact data (U_5)—because the system  
is designed to ensure that the perceived race data  
is anonymized.

We believe the likelihood of this threat is high, by design; we 
believe the impact of this threat is low—we do not believe a 
technical understanding of their individual participation in 
aggregate analyses is critical to our community.
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TS3: Homogeneity attack through 
circumventing P-Sensitize
See Figure 19 below. An authorized member of the Airbnb 
anti-discrimination team (MA3), rather than running 3.5 
P-Sensitize, directly accesses 2.5 File 2 (I_ds1) and, linking 
NID to 2.3 Data Store 1 (I_ds4) and then quasi-identifiers in 
2.1 User Data (I_ds3), achieves certain attribute disclosure 
(I_ds) for those users whose equivalence class (in 2.5 
File 2) is homogenous, i.e. has only one distinct value for 
perceived race. This is known as a homogeneity attack and 
may occur because 2.5 File 2 is not p-sensitive [Basu 2015, 
Machanavajjhala 2006].

We believe the likelihood of this threat is low as it requires the 
misactor be a malicious authorized member of the Airbnb 
anti-discrimination team (MA3); we believe the impact of this 
threat is medium—reflecting the low percentage of users 
we expect, based on our simulations, to be in homogenous 
equivalence classes (less than 1% for k >= 5) as shown in 
Figure 14 earlier in this paper.

See Figure 20 below. An authorized Airbnb employee (MA2) 
or other misactor (MA1, MA4) gains unauthorized access to 
both 2.3 Data Store 1 and 2.5 File 2 (I_ds1) and engages in 
the same homogeneity attack (I_ds) described in TS3 above 
(I_ds3, I_ds4) to achieve certain attribute disclosure (I_ds) 
only for those users whose equivalence class is homogenous.

We believe the likelihood of this threat is low as it requires a 
misactor to circumvent access controls to breach 5.2 Airbnb 
anti-discrimination Team Trust Boundary; we believe the 
impact of this threat is medium as in TS3 above.

TS4: Homogeneity attack through 
unauthorized access
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TS5: Identification through unauthorized 
access to research partner and 
circumventing P-Sensitize
See Figure 21 below. An authorized member of the Airbnb 
anti-discrimination team (MA3) gains unauthorized access to 
2.4 File 1 (I_ds1) and, prior to running 3.5 P-Sensitize, directly 
accesses 2.5 File 2 (I_ds1) and links NID to 2.4 File 1 (I_ds4) 
followed by the unique identifier Profile Photo to 2.1 User Data 
(I_ds3), achieving certain attribute disclosure (I_ds) for all 
users in the analysis.

We believe the likelihood of this threat is low as it requires 
the misactor be a malicious authorized member of the 
Airbnb anti-discrimination team that also circumvents access 
controls to breach 5.3 Research Partner Trust Boundary; we 
believe the impact of this threat is high as it leads to certain 
attribute disclosure for all users in the analysis.

See Figure 22 below. An authorized research partner 
employee (MA4), directly accesses 2.4 File 1, Data flow 
4.16 (through circumventing the process by which 2.5 File 
2 is generated; details of 1.2 Research Partner are not 
diagrammed in the DFD), and 2.7 Public Data (I_ds1). Facial 
recognition/photo matching may be used to link the user’s 
other publicly available photos from 2.7 Public Data to the 
user’s Profile Photo from 2.4 File 1 (L_ds, I_ds4). Unless 

the exact same photo exists in both, the matching will be 
uncertain, i.e. probabilistic attribute disclosure for some users 
(I_ds). First name from 2.4 File 1 may be used to increase 
certainty through either its direct existence or linkage 
between other quasi-identifiers in 2.7 Public Data (I_ds6).

We believe the likelihood of this threat is high—while we 
assume the likelihood of internal malicious misactors to be 
low, externally we assume high; we believe the impact of 
this threat is medium as it leads to certain or probabilistic 
(depending upon the photo matching method) attribute 
disclosure for some users in the dataset [Acquisti 2014].

TS7: Identification through research partner 
unauthorized access to Airbnb
See Figure 22 below. An authorized research partner 
employee (MA4) gains unauthorized access to 2.1 User Data 
(I_ds1) and accesses 2.4 File 1 and Data flow 4.16 (see TS6 
above) (I_ds1); they then link NID from Data flow 4.16 to 2.4 
File 1 (I_ds4) followed by the unique identifier Profile Photo to 
2.1 User Data (I_ds3), achieving certain attribute disclosure 
(I_ds) for all users in the analysis.

We believe the likelihood of this threat is low as it requires the 
misactor be an authorized research partner employee and 
breach 5.1 Airbnb Trust Boundary; we believe the impact of 
this threat is high as it leads to certain attribute disclosure for 
all users in the analysis.

TS6: Identification by malicious  
research partner
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See Figure 23 below. An authorized member of the Airbnb 
anti-discrimination team (MA3), linking rows in each 
equivalence class (>= k) in 2.6 Data Store 2 (I_ds1) via quasi-
identifiers to rows (>= k) in 2.1 User Data (I_ds4); in doing 
so, they may revise their posterior beliefs to have increased 
accuracy in estimating the perceived race of users (I_ds). 
Alternatively, an authorized Airbnb employee (MA2) may gain 
unauthorized access to 2.6 Data Store 2 (I_ds1) to achieve 
the same probabilistic attribute disclosure.

We believe the likelihood of this threat is low as it requires 
either (a) the misactor be a malicious authorized member of 
the Airbnb anti-discrimination team (MA3) or (b) the misactor 
breach 5.2 Airbnb anti-discrimination Team Trust Boundary; 
we believe the impact of this threat is low given our guidelines 
for choosing k set forth in Appendix 1: survey of values of k.

TS9: Non-compliant user participation
An authorized Airbnb employee (MA2) or authorized member 
of the Airbnb anti-discrimination team (MA3) modifies 
the policies (business logic in 3.2 Filter Users) that ensure 
only users (1.1 Users) who have been properly notified 
(see TS1 above) and whose participation would not violate 
internal policies and any applicable laws/regulations may be 
considered applicable for analysis (3.6 Measure Acceptance 
Rate Gap). This modification of policies may be malicious 
(NC_1) or simply a well-intentioned mistake (NC_2).

We believe the likelihood of this threat is low as it requires the 
misactor be a malicious authorized employee or a bug in the 
implementation of relatively stable business logic (outside the 
scope of this paper); we believe the impact of this threat is 
high as it may lead to violation of internal policies or applicable 
laws/regulations.

TS8: Probabilistic identification  
by modifying posterior beliefs
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Appendix 3: 

Research partner 
requirements
This appendix is meant to precisely describe requirements and to be included in legal agreements 
with research partners.

Tag Batch Process Description

Summary
Using asymmetric encryption, Airbnb sends Research Partner a collection of photo URLs and first 
names that human operators, called Taggers, use to label them with perceived race labels, called 
Tags. The results are aggregated by Research Partner and sent to Airbnb, again using  
asymmetric encryption.

Key exchange
Research Partner generates a public-private key using the GPG parameters agreed upon with 
Airbnb—this is the pair (Public K1, Private K1). Airbnb also generates a public-private key—this is 
the pair (Public K2, Private K2). Each will share only the public key (Public K1 and Public K2) with each 
other via a predetermined Secure Cloud Storage shared folder.

Initiate Tag Batch
Airbnb encrypts the information for tagging in a Tag Batch Request File using Public K1 and uploads 
them to a predetermined Secure Cloud Storage shared folder. Research Partner downloads the file 
and decrypts them using Private K1.

Tag Loop
For each Photo URL, First Name pair in the files, Research Partner assigns them to a Tagger 
who, examining the Photo and the first name, selects a perceived race label (Tag) for the most 
prominent person (if more than one person) in the photo, as well as the number of people in the 
photo (usually only one person).

Complete Tag Batch
Research Partner collects the Tags with their associated identifier (NID) into a Tag Batch Results 
File. This file is encrypted using Public K2 and uploaded to a predetermined Secure Cloud Storage 
shared folder. Airbnb downloads the file and decrypts it using Private K2.

Airbnb then deletes all files in Secure Cloud Storage (Public K1 File, Public K2 File, Tag Batch 
Definitions File, Tag Batch Entries File, and Tag Batch Results File). Research Partner and Airbnb 
expunge private keys (Private K1 and Private K2) from their respective systems.
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The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as 
described in RFC 2119.

Review Requirements
• Research Partner MUST pass Airbnb Research Partner Review, including an Airbnb  

Security Review.

• Research Partner MUST pass an Airbnb Security Review at-least once every 12 months.

• Research Partner SHALL notify Airbnb of changes to Research Partner systems they believe, 
based on previous Airbnb Security Reviews, SHOULD be relevant; SHOULD Airbnb deem it 
necessary, Research Partner MUST pass an Airbnb Security Review.

Data / Information Requirements
• Research Partner MUST delete data associated with a Tag Batch from internal systems within  

30 days of transmitting Tag Batch Results File to the predetermined Secure Cloud Storage 
shared folder.

• Research Partner MUST NOT share Private K1 with Airbnb or any other party.

• Research Partner SHALL notify Airbnb if they suspect any of the following MAY have been 
compromised or otherwise disclosed: Public K1, Public K2, Private K1, Private K2.

• Research Partner MUST NOT utilize any information exchanged and derived from the process 
described above, including Tags, for any use beyond that described in this requirements 
document.

• Research Partner MUST NOT reveal the identity of Airbnb to Taggers or to any third parties 
(confidentiality).

• The parameters used for GPG keys SHALL be: 
 
Key-Type: RSA 
Key-Length: 2048 
Name-Real: <Research Partner name> 
Name-Email: <Research Partner email address> 
Expire-Date: seconds=5256000 
Passphrase: <Chosen by Research Partner for each Tag Batch>

Process Requirements
• Research Partner Taggers SHALL be humans, i.e. Research Partner MUST NOT utilize computer 

algorithms (including machine learning models) to select Tags in place of or in addition to 
human decision-making.

• Research Partner Taggers SHALL be based in the United States.

• Research Partner Taggers SHALL select Tags based solely upon a subjective visual review of the 
photos and associated first names. Research Partner and Research Partner Taggers MUST NOT 
utilize objective measurement tools such as rulers in place of or in addition to subjective  
visual review.

Requirements

https://www.ietf.org/rfc/rfc2119.txt
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• Research Partner MUST assign a unique identifier to each Tagger that is used to uniquely 
identify that Tagger for the entirety of a single Tag Batch.

• Tag Batch Results File sent to Airbnb by Research Partner:

 – MUST contain the associated ID (NID) from the Tag Batch Request File.

 – MUST contain the unique identifier (TID) assigned to the Tagger by Research Partner.

 – MUST contain a Tag representing the perceived race of the most prominent person in the 
photo from the photo URL that is one of the allowed labels articulated in the current SoW.

 – MUST contain the number of persons in the photo from the photo URL. If no person is 
contained in the photo, this value SHALL be 0.

Informal File Specifications

Tag Batch Requests File
 
<NID_1>, <PublicPhotoURL_1>, <FirstName_1> 
[..] 
<NID_N>, <PublicPhotoURL_N>, <FirstName_N>

Tag Batch Results File
 
<NID_1>, <TID_1>, <Tag_1>, <NumPeopleInPhoto_1> 
[..] 
<NID_N>, <TID_N>, <Tag_N>, <NumPeopleInPhoto_N>


